
Eye Canalogram Image Analysis with Generalized
Additive Models

Eric N. Brown
2015-10-12

Introduction

This R Markdown document illustrates how to use the eye-canalogram package to quantitatively analyze
canalograms obtained in aqueous-outflow eye models. R code is provided along with its output.

Load R Packages

The fist step is to load the required R packages and others used by this document:

library(EyeCanalogram)

library(knitr)
library(reshape2)
library(ggplot2)
library(dplyr)
library(mgcv)

Eye Canalogram Image Processsing

Options

Option Value
Title AC2 on Day 1
Path ACs/d1/__13_/_13_T00
Resolution 32
Radius Bands 3

Loading Images

The read.images function of the EyeCanalogram package is first used to read all canalogram images. The
most important function parameter is the root parameter which is the common filename prefix for all
images. For example, if root is ACs/d1/__13_/_13_T00, then all TIFF files beginning with _13_T00 in the
ACs/d1/__13_ directory would be loaded. The n parameter can be used to restrict loading to the first n
images found. The low parameter sets the number of macropixels used in each direction. Here low is 32
which will result in resizing all images to have 32 pixels in the smallest dimension (here the image height)
with possibly more in the other dimension depending on the input image aspect ratio.

Two special files are potentially loaded along with the canalograms. If a file named mask.tif or mask.png
exists, it is converted to a black-and-white mask where white pixels indicate the location and shape of the

1

http://rmarkdown.rstudio.com/
https://www.r-project.org/

cornea in all other canalogram images. If a file roi.tif exists, it too is converted to a black-and-white mask
where white pixels indicate the perilimbal area and cornea to analyze — black pixels can be used to mask out
regions not of interest such as the compression ring used for anterior chamber cultures.

images <- read.images(root = root, n = NA, low = resolution)

Reading '_13_T00' images in directory '/home/enb/LAB/MANUSCRIPTS/eye-canalogram/test/data-paper-1/ACs/d1/__13_'.
Using cornea mask found in '/home/enb/LAB/MANUSCRIPTS/eye-canalogram/test/data-paper-1/ACs/d1/__13_/mask.tif'.
Cornea provided by mask.
Using region-of-interest mask found in '/home/enb/LAB/MANUSCRIPTS/eye-canalogram/test/data-paper-1/ACs/d1/__13_/roi.tif'.

This resulted in 41 images being loaded from the /home/enb/LAB/MANUSCRIPTS/eye-canalogram/test/data-
paper-1/ACs/d1/__13_ directory. After reducing their size to 43 by 32 pixels (also called macropixels),
these images take up 4707256 bytes of memory. These data are stored at images$data.low, which is an
object of Image class from the EBImage BioConductor package.

For illustration, next the macropixels are extracted for a number of frames and displayed using ggplot2. The
melt function from the reshape2 package is used to convert the 43 × 32 × 41 array of pixel information into
a data.frame. The column names are then assigned, individual frames chosen, and finally those frames are
displayed.

x <- melt(images$data.low)
colnames(x) <- c('x', 'y', 't', 'I')
frames <- seq(min(x$t), max(x$t), by = 5)
ggplot(x[x$t %in% frames,], aes(x, y, fill = I)) +

coord_fixed(ratio = 1) +
ggtitle("Macropixel Data") + xlab("X") + ylab("Y") +
geom_raster() + facet_wrap(~ t) +
scale_fill_gradient("Raw Intensity", low = '#000000', high = '#00FF00') + theme_bw()

2

 1 6 11

16 21 26

31 36 41

0

10

20

30

0

10

20

30

0

10

20

30

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
X

Y

4000

8000

12000

Raw Intensity

Macropixel Data

Process Images

The entire dataset is fit individually at each macropixel and all at once (global fit) with smoothing along the
clock hours, radial distance, time, and a tensor product for the interactions. The fit.gam function of the
EyeCanalogram package does all of the work. The function parameter r_bands sets how many radial bands
around the cornea are used for the global fit and ring plots.

processed <- fit.gam(images, r_bands = r_bands)

Fitting GAM to grid (individual fits)
Fitting 421 individual GAM models
Processing grid metrics

3

Fitting GAM to rings (global fit)
Fitting low-resolution data
Processing global & ring metrics
Processing quadrants
Updating rings

Quadrant Flow

Flow below is estimated from the increase in fluorescence (from the initial, possibly non-zero, fluorescence in
the first frame) to the time at half-max. [This differs from the Filling Rate which is the is the increase in
absolute fluorescence (from an initial value of zero) to the time at half-max.] The flow is determined for a
thin region a given distance from the cornea. Here, a distance of 2 pixels from the cornea is chosen. The
global-fit is used to estimate the fluorescence in this region and then flow is calculated. The proportion of
the total flow for the entire analysis region (outside of the cornea and within the mounting ring) is then
attributed to each quadrant. This can be converted into an estimate in microliters/minute given an estimated
3 microliters of total flow flow per minute for the entire eye.

Compute the flow per quadrant
flow <- processedgamprediction_metrics %>%

dplyr::group_by(quadrant) %>%
dplyr::summarize(min_theta = floor(min(theta %% 360)),

max_theta = ceiling(max(theta %% 360)),
mean_rate = mean(mid_rate),
mean_flow = mean(flow),
total_flow = sum(flow))

flow$percent_flow <- 100 * flow$total_flow / sum(flow$total_flow)
Give the quadrants nice names
flow$quadrant <- '??'
flow$quadrant[flow$min_theta < 45 & 45 < flow$max_theta] <- 'SN'
flow$quadrant[flow$min_theta < 135 & 135 < flow$max_theta] <- 'IN'
flow$quadrant[flow$min_theta < 225 & 225 < flow$max_theta] <- 'IT'
flow$quadrant[flow$min_theta < 315 & 315 < flow$max_theta] <- 'ST'
Pull out only the info for the table
flow <- flow %>%

select(quadrant, total_flow, percent_flow) %>%
mutate(flow = percent_flow / 100 * 3.0)

Print the table
kable(flow)

quadrant total_flow percent_flow flow
SN 1.069871 15.55509 0.4666527
IN 2.850337 41.44167 1.2432501
IT 1.085844 15.78733 0.4736198
ST 1.871896 27.21591 0.8164774

In the above code, the processedgamprediction_metrics dataframe contains the predicted fluorescence
intensity from the global prediction for a range of all angles, radii, and timepoints. These are then grouped
by quadrant (using the dplyr package) and the total flow and percent flow is calculated. The next lines
assign user-friendly labels to the the quadrant column and output it using the kable function in the knitr
package.

4

Displaying Results

All of the data can be displayed at once as shown above. Alternatively, different measures of the fit can be
displayed schematically.

Plot the dot-plot for this eye
print(plot.dot(processed, scale.range = c(1, 3), time.max = 40))

Intensity

0.00

0.25

0.50

0.75

1.00

0

10

20

30

40
Time

Individual Fits

Plot the ring-plot for half-intensity
print(plot.ring(processed, which = 'intensity', resolution = 400))

5

0.00

0.25

0.50

0.75

1.00

Half−
Intensity

Half−Intensity

Plot the ring-plot for filling half-time
print(plot.ring(processed, which = 'time', resolution = 400))

10

20

30

40
Frame

Filling Time

6

Plot the ring-plot for filling rate
print(plot.ring(processed, which = 'rate', resolution = 400))

0

2

4

6

Rate

Filling Rate

Since all plots are created using the ggplot2 package, they can be manipulated using the ggplot2 and grid
packages:

mytheme <- ggplot2::theme_bw() +
ggplot2::theme(legend.position="right",

axis.ticks = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.text.y = ggplot2::element_blank(),
panel.border = ggplot2::element_blank(),
panel.grid = ggplot2::element_blank(),
panel.margin = grid::unit(0, 'mm'),
legend.margin = grid::unit(0, 'mm'),
legend.key.size = grid::unit(10, "mm"),
legend.key = ggplot2::element_rect(fill = NULL, color = "white"),
legend.box = 'horizontal',
plot.margin = grid::unit(c(0,0,0,0), 'mm'))

p1 <- plot.dot(processed, scale.range = c(1, 2), time.max = 40) +
mytheme + ylab("") + ggtitle("")

p2 <- plot.ring(processed, which = 'time', resolution = 400, time.max = 40) +
mytheme + ggtitle("")

p3 <- plot.ring(processed, which = 'rate', resolution = 400, rate.max = 10) +
mytheme + ggtitle("")

grid::grid.newpage()
grid::pushViewport(grid::viewport(layout = grid::grid.layout(nrow = 1, ncol = 3, widths = grid::unit(c(1.5, 1, 1), 'null'))))

7

print(p1, vp = grid::viewport(layout.pos.row = 1, layout.pos.col = 1))
print(p2, vp = grid::viewport(layout.pos.row = 1, layout.pos.col = 2))
print(p3, vp = grid::viewport(layout.pos.row = 1, layout.pos.col = 3))

Intensity

0.00

0.25

0.50

0.75

1.00
0

10

20

30

40
Time

10

20

30

40
Frame

0.0

2.5

5.0

7.5

10.0
Rate

8

	Introduction
	Load R Packages

	Eye Canalogram Image Processsing
	Options
	Loading Images
	Process Images
	Quadrant Flow
	Displaying Results

